Targeting of U2AF65 to Sites of Active Splicing in the Nucleus

نویسندگان

  • Margarida Gama-Carvalho
  • Randy D. Krauss
  • Lijian Chiang
  • Juan Valcárcel
  • Michael R. Green
  • Maria Carmo-Fonseca
چکیده

U2AF65 is an essential splicing factor that promotes binding of U2 small nuclear (sn)RNP at the pre-mRNA branchpoint. Here we describe a novel monoclonal antibody that reacts specifically with U2AF65. Using this antibody, we show that U2AF65 is diffusely distributed in the nucleoplasm with additional concentration in nuclear speckles, which represent subnuclear compartments enriched in splicing snRNPs and other splicing factors. Furthermore, transient expression assays using epitope-tagged deletion mutants of U2AF65 indicate that targeting of the protein to nuclear speckles is not affected by removing either the RNA binding domain, the RS domain, or the region required for interaction with U2AF35. The association of U2AF65 with speckles persists during mitosis, when transcription and splicing are downregulated. Moreover, U2AF65 is localized to nuclear speckles in early G1 cells that were treated with transcription inhibitors during mitosis, suggesting that the localization of U2AF65 in speckles is independent of the presence of pre-mRNA in the nucleus, which is consistent with the idea that speckles represent storage sites for inactive splicing factors. After adenovirus infection, U2AF65 redistributes from the speckles and is prefferentially detected at sites of viral transcription. By combining adenoviral infection with transient expression of deletion mutants, we show a specific requirement of the RS domain for recruitment of U2AF65 to sites of active splicing in the nucleus. This suggests that interactions involving the RS region of U2AF65 may play an important role in targeting this protein to spliceosomes in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65.

U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) re...

متن کامل

14-3-3 Binding to Ataxin-1(ATXN1) Regulates Its Dephosphorylation at Ser-776 and Transport to the Nucleus*

Spinocerebellar ataxia type 1 (SCA1) is a lethal neurodegenerative disorder caused by expansion of a polyglutamine tract in ATXN1. A prominent site of pathology in SCA1 is cerebellar Purkinje neurons where mutant ATXN1 must enter the nucleus to cause disease. In SCA1, phosphorylation of ATXN1 at Ser-776 modulates disease. Interestingly, Ser-776 is located within a region of ATXN1 that harbors s...

متن کامل

Targeting tat inhibitors in the assembly of human immunodeficiency virus type 1 transcription complexes.

Human immunodeficiency virus type 1 (HIV-1) transcription is regulated by the viral Tat protein, which relieves a block to elongation by recruiting an elongation factor, P-TEFb, to the viral promoter. Here, we report the discovery of potent Tat inhibitors that utilize a localization signal to target a dominant negative protein to its site of action. Fusing the Tat activation domain to some spli...

متن کامل

The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing.

Myotonic dystrophy type 1 (DM1) is a genetic disorder linked to a (CTG)(n) repeat expansion in the 3' untranslated region of the DMPK gene. Upon transcription in the nucleus, the CUG repeats form a stable RNA stem-loop that sequesters the RNA-binding protein MBNL1 from its normal function in the cell. MBNL1 regulates the alternative splicing of many pre-mRNAs, and upon MBNL1's sequestration, th...

متن کامل

The role of U2AF35 and U2AF65 in enhancer-dependent splicing.

Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 137  شماره 

صفحات  -

تاریخ انتشار 1997